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Abstract

The collective execution of a single task, such as
foraging or clustering, has received considerable
research attention in the minimalist distributed
robotic systems (MDRS) community. In contrast,
achievement of sequential tasks by MDRS has so
far been considered in only a handful of stud-
ies. Sequential task execution requires a collective
system to carry out a task, and then, in a coor-
dinated fashion, move on to another task. This
paper describes work in controlling a minimalist
distributed robotic system in sequential task ex-
ecution. We present two MDRS algorithms for
sequential task execution in the foraging task do-
main, and validate them experimentally in simu-
lation. One of the algorithms uses temporal be-
havior activation, the other makes use of prob-
abilistic behavior activation. Both are effective
in the partially-observable, non-stationary envi-
ronments we tested them in, and their relative
strengths are compared analytically.

1. Introduction

A Minimalist Distributed Robotic System (MDRS) is
a society of simple robots, with each robot limited to
only local sensing, control, and very simple capabilities
in terms of intelligence and communication. Such robots
maintain little or no state information, extract limited,
local, and noisy information from their available sensors,
and, in most MDRS implementations, cannot explicitly
communicate with other robots in the system. In many
cases, the robots are not even aware that other robots
exist, or in any case cannot, with their simple sensors,
distinguish them from other objects and obstacles in the
environment. In spite of all these limitations, MDRS
have been shown to be highly effective at certain collec-
tive tasks discussed below.

The aim of this work is to study ways of providing
such MDRS with the capability of executing sequential

tasks. Sequential task execution in a distributed system
is described by (Bonabeau et al., 1999) as “individuals
tend[ing] to perform the same task before switching in
relative synchrony to another task.” This capability is
essential in a variety of task classes, especially those in-
volving multiple, sequentially dependent goals.

This paper is organized as follows. In Section 2 we
provide the motivation and relevant related work. In
Section 3 we give a detailed description of the foraging
task we use for algorithm evaluation in the rest of the
paper. In Section 4 we describe our experimental task
domain for empirical evaluation of sequential foraging
in MDRS. In Section 5 we present two algorithms for
sequential task execution, one using temporal behavior
activation, the other using probabilistic behavior activa-
tion, and experimentally verify their performance on a
set of sequential foraging tasks. In Section 6 we describe
and analyze the experimental results, discuss them in
Section 7, and draw conclusions about their effectiveness
in Section 8.

2. Motivation and Related Work

MDRS have been shown to be a powerful platform for
efficient, robust, and scalable task solutions to collec-
tive tasks in dynamic environments (Matarić, 1995b,
Cao et al., 1997). Although consisting of extremely lim-
ited robots, such systems are capable of executing in-
creasingly complex collective tasks. However, to date
most MDRS have been designed for the achievement of
a single task, such as object foraging, sorting, or cluster-
ing. In contrast, our work described here is focused on
sequential task execution in a MDRS, which requires a
set of tasks to be executed in a specified order, with the
initiation of a task occurring only after the termination
of a required prior task.

The addition of sequential task execution capabil-
ities to a MDRS greatly increases its functionality.
(Théraulaz et al., 1998) describe how the adaptability of
complex social insect societies is increased by allowing
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members of the society to dynamically change tasks (be-
haviors) when necessary. Giving each robot the ability to
dynamically change behaviors allows the MDRS to oper-
ate in a domain requiring the simultaneous regulation of
many goals. This is analogous to the many interwoven
tasks seen in social insect colonies, such as foraging, nest
building, and brood sorting. These tasks in social insect
colonies are interwoven through the inter-related propor-
tions of individuals participating in various parts of the
system. For example, the number of workers involved in
foraging is related to the amount of nest building work
available, which may depend on the state of the colony’s
young, etc.

In general, the accomplishment of a set of sequential
tasks requires sufficient information about the progress
on the task in order to determine the appropriate action
to take at any given time, and in particular at key steps
of transitioning between tasks. However, in a MDRS,
because of the robots’ very limited sensing, intelligence,
and communication capabilities, there are many domains
in which gathering information on the current state of
task progress, part of the global state of the environment,
may not be possible for the individuals in the system.
Formally, to the individuals in a MDRS, the world is
partially-observable and highly non-stationary, yet they
must collectively achieve a global goal whose changing
state they cannot perceive. This is the challenge our
work is addressing.

In the research area of simulation and study of in-
sect colonies and their behaviors, some of the most
relevant work to ours is in sequential control of ant
cemetery organization, ant brood sorting, and social
insect nest building (Franks and Sendova-Franks, 1992,
Franks et al., 1992). (Bonabeau et al., 1996) describe
mechanisms of task regulation in insect societies through
the use of response thresholds for task-related stimuli.
In their model, members of a society participate in a
task when the strength of the task-related stimuli is
greater then some threshold. The motivation for our
work comes from the task succession models presented
in (Bonabeau et al., 1999) and (Bonabeau et al., 1994),
which demonstrate the use of probabilistic local action
selection in distributed construction and show it to re-
sult in increased coordination in the simulation of wasp
nest construction.

We provide a brief summary of related work in phys-
ical MDRS, using robots similar to those our system
is modeled on. (Beckers et al., 1994) demonstrate the
collection and clustering of heterogeneous objects into
homogeneous clusters. (Matarić, 1995a) provides early
work on group coordination in MDRS using a collection
of simple basis behaviors. (Werger and Matarić, 1996)
demonstrate chain formation and its use for forag-
ing in a MDRS. (Martinoli et al., 1999) demonstrate
object clustering in a minimalist robotic system as

well as probabilistically modeling the robots’ physi-
cal behaviors. (Werger, 1999) shows MDRS coordina-
tion techniques applied to navigation in robot soccer.
(Holland and Melhuish, 2000) use probabilistic behavior
selection in minimalist robotic clustering and sorting.
(Goldberg and Matarić, 2002) precisely define the forag-
ing task for MDRS, provide a collection of general dis-
tributed behavior-based algorithms and their empirical
evaluation.

3. Sequential Foraging Task

In the domain of MDRS, the foraging task - gathering a
set of objects and transporting them to a home region
- has been studied extensively. In its standard form,
foraging is a single, non-sequential task, in that objects
are transported in no particular order. We are using a
sequential variation of foraging, in order to investigate
the capabilities of a MDRS on sequential task execution.

3.1 Task Description

Sequential foraging, in contrast to standard foraging, re-
quires a collection of objects (pucks) to be collected in a
specified order. Initially, the environment contains a col-
lection of pucks whose number and distribution are not
known to the MDRS. The collection of pucks consists of
three distinct types: PuckRed, PuckGreen, and PuckBlue,
and the types are assumed to be distinguishable by the
individual robots. The pucks are to be foraged in or-
der of type; in our experiments the order was: PuckRed

are to be collected before PuckGreen, which are to be
collected before PuckBlue.

As discussed above, due to the limited capabilities of
the robots and the dynamics of the task and environ-
ment, it is not practical to assume the robots in our
MDRS are capable of knowing the current global state
of the environment or of task progress. This means that
no robot has or can obtain global information such as the
size and shape of the foraging arena, the initial number
of pucks to be foraged (total or by type), the current
number of pucks remaining to be foraged (total or by
type), the number of pucks already foraged (total or by
type), or the current number of active foraging robots.
Also, it cannot be assumed that any robot or subset of
robots will always be operational, that the number of for-
aging robots will remain constant, or that the pucks will
remain in their initial positions until they are collected.
Despite these constraints, as will be demonstrated be-
low, MDRS are still capable of carrying out the sequen-
tial foraging task without the aid of extended sensing,
keeping of history, or inter-agent communication.



3.2 Sequential Foraging Evaluation Metric

Toward proper evaluation of algorithm performance, we
developed a cumulative metric that reflects the sequen-
tial requirements of the task. The metric, initialized to
0 at the start of every experiment, is updated at every
simulation time-step (approximately every 0.1 seconds
of simulated real-time). At each update, for all pucks,
PuckNew, that are deposited in the home region at time
t, the utility value, Util(t), is updated according to the
procedure:

Util(t) = Util(t-1)
for all puck in PuckNew

if (puck == PuckGreen) then
Util(t) = Util(t) + PropRed

else if (puck == PuckBlue) then
Util(t) = Util(t) + PropRed * PropGreen

Therefore, the maximum utility for a given experimen-
tal trial is equal to the number of PuckGreens plus the
number of PuckBlues. This maximum utility value is
achieved only if all the PuckReds are collected before
any of the PuckGreens and PuckBlues, and if all the
PuckGreens are foraged before any of the PuckBlues. Al-
though the utility function is not directly incremented
by the successful collection of a PuckRed, the foraging of
PuckReds is implicitly incorporated into the utility func-
tion because the foraging and PuckGreens and PuckBlues
are only given full utility value if all PuckReds have al-
ready been collected. PuckGreens and PuckBlues are
given partial credit if foraged before all required prior
pucks have been foraged based on the percentage of to-
tal required prior pucks already foraged.

At the end of an experimental trial, terminated at time
tFinal, the sequential foraging algorithm is given a final
utility value, UtilFinal, based on the following formula:

UtilFinal = 100.0∗ (Util(tFinal)/(TPuckGreen +TPuckBlue)
(1)

where TPuckGreen and TPuckBlue are the total num-
ber of PuckGreen and total number of PuckBlue in the
environment, respectively.

The maximum possible UtilFinal value is 100, repre-
senting perfect execution of the sequential foraging task.

4. Simulation Environment

All simulations were performed using Player and Stage.
Player (Gerkey et al., 2001), is a server that connects
robots, sensors, and control programs over the network.
Stage (Vaughan, 2000) simulates a set of Player devices.
Together, the two represent a high-fidelity simulation
tool for individual robots and robot teams which has

been validated on a collection of real-world robot ex-
periments using Player and Stage programs transferred
directly to physical Pioneer 2DX mobile robots.

4.1 The Robots

The robots used in the experimental simulations are real-
istic simulations of the Pioneer 2DX mobile robot. Each
robot, approximately 30 cm in diameter, is equipped
with a differential drive, a forward-looking 180-degree
field-of-view SICK laser rangefinder (used for obstacle
avoidance in our work), and a forward-looking Sony color
camera with a 45-degree field-of-view (used for puck de-
tection and classification). The simulated robots also
rely on a Global Positioning System (GPS), which is not
available on physical indoor Pioneers, and is in our simu-
lation work used only to determine the direction of travel
when homing. Importantly, no history is kept based on
the GPS information, including past puck location. Each
robot is equipped with a 2-DOF gripper on the front ca-
pable of picking up and transporting a single puck at
a time. The gripper has a break-beam sensor that can
detect when something is between the gripper jaws.

4.2 Robot Behavior-Based Controller

All robots ran identical behavior-based controllers con-
sisting of the following mutually exclusive behaviors:
Random Walk, Collision Avoidance, Visual Servo, Grasp
Puck, Drop Puck, and Homing. Descriptions of the be-
haviors used to implement the foraging algorithms are
given below.

- The Visual Servo behavior causes the robot to vi-
sually servo toward the nearest puck detected by the
vision system.

- The Grasp Puck behavior causes the robot to stop,
close, and raise the gripper.

- The Homing behavior causes the robot to turn and
move on a direct path toward the home region.

- The Drop Puck behavior causes the robot to stop,
lower, and open the gripper.

- The Collision Avoidance behavior causes the
robot to stop and turn away from a detected obstacle
(arena wall, another robot) at a random turn-rate in
the range [20,40] degrees/time- step for a period of
15 time-steps.

- The Random Walk behavior causes the robot to
turn at a random turn-rate in the range [-20,20]
degrees/time-step for a period of 20 time-steps.

Each behavior above has a set of activation conditions,
based on the relevant sensor inputs. When met, the con-
ditions cause the behavior to become active. A descrip-
tion of instances in which each activation condition is



true (1) is given below. In all other instances, the acti-
vation condition is false (0).

- The Obstacle Detected activation condition is true
when an obstacle is detected by the laser scanner
within a distance of 60 cm.

- The PuckDet Detected activation condition is true
if a puck is detected by the color camera within a
distance of approximately 120 cm. The detected puck
is of type Det (e.g. red, blue, green).

- The Grasping Puck activation condition is true if
the robot’s gripper is closed and raised.

- The Gripper Break-Beam On activation condi-
tion is true if the break-beam sensor between the de-
tects something between the gripper jaws.

- The Inside Home Region activation condition is
true if the robot is inside the home region. GPS
is used to determine if the robot is inside the home
region.

4.3 Experimental Environments

Figure 1: Sequential Foraging Arena. The four robots are

lined up on the right, the pucks are the circles in the middle

of the arena, and the home region is behind the white line

on the left. Initially, the different puck types are distributed

randomly.

As shown in Figure 1, the experimental environment
consists of an arena with an initial collection of pucks
located evenly in the center, their different types dis-
tributed randomly, and a home region on one side, to
which the pucks are to be transported. Whenever a puck

is deposited in the home region, it is removed from the
arena.

We used a group size of four robots in all experiments;
and a fixed initial state with their locations on the right
side of the arena, as shown in Figure 1.

Our experimental design involved the use of four differ-
ent environment variations on the above arena, all with
four robots simultaneously performing the sequential for-
aging task. The experimental environments varied in the
relative proportion of puck types and the size of the for-
aging arena. Initial conditions of all four environments
were held constant for experiments with all foraging al-
gorithms. The characteristics of the four environments
are shown in Table 1.

The four environments were designed to evaluate the
adaptability of sequential foraging algorithms along two
dimensions: 1) the relative puck type proportions and 2)
the arena size. Environment 1 is the base case. Environ-
ments 2 and 3 vary the relative puck type proportions:
Environment 2 has a high proportion of PuckRed and
Environment 3 has a high proportion of PuckBlue. En-
vironment 4 increases the arena size to four times the
foraging area found in Environments 1-3.

5. Sequential Foraging Algorithms

We developed and tested two foraging algorithms:
Timer-Based Foraging and Probabilistic Foraging.
These were investigated and analyzed to assess their
effectiveness in the sequential foraging task and their
adaptability to different environmental characteristics.
As a baseline for comparison, a traditional, non-
sequential foraging algorithm, Standard Foraging, was
also analyzed.

5.1 Standard Foraging

The Standard Foraging algorithm uses the behavior net-
work shown in Table 2. In the behavior network, 1s mean
the activation condition must be active, 0s mean it must
not be active, and Xs mean the state of the activation
condition is irrelevant. There is no notion of sequential
foraging in the Standard Foraging algorithm as no dis-
tinction is made among puck types. The performance
of this algorithm is used as a baseline for comparing the
sequential foraging capabilities of the Timer-Based and
Probabilistic Foraging algorithms.

5.2 Timer-Based Foraging

In the Timer-Based Foraging algorithm, each robot uses
an internal timer to dictate which puck type should be
foraged at a particular time. Each robot has its own
independent timer and timers across robots are not ex-
plicitly synchronized.

Each robot’s timer, TimerRobot, which is initialized to



Env # Arena Size(m) Total Pucks PuckRed PuckGreen PuckBlue

1 8.75 x 8.75 24 8 8 8
2 8.75 x 8.75 24 14 8 2
3 8.75 x 8.75 24 2 8 14
4 17.5 x 17.5 24 8 8 8

Table 1: Experimental Environments

Obstacle Puck Grasping Gripper Break- Inside Home Active
Detected Detected Puck Beam On Region Behavior

0 1 0 0 X Visual Servo
0 X 0 1 X Grasp Puck
0 X 1 1 0 Homing
0 X 1 1 1 Drop Puck
1 X X X X Collision Avoidance
0 0 0 0 X Random Walk

Table 2: Behavior Network for Standard Foraging

0 at the beginning of an experiment and incremented by
1 at each simulation time-step of 1/10th of a second. A
set of timer alarms are used to control which puck types
can be foraged at a given TimerRobot value. There is a
timer alarm for each puck type: AlarmRed, AlarmGreen,
AlarmBlue, respectively. When a puck is detected, a de-
cision is made about whether to visually servo toward
the detected puck; the decision is based on comparing
the robot’s TimerRobot value with the timer alarm value
for the detected puck type. If the TimerRobot value is
greater than the timer alarm for the detected puck type,
the robot’s TimerRobot value will be reset back to the
alarm value of the detected puck type and the robot
will begin visual servoing toward the detected puck. Us-
ing TimerRobot with appropriately set timer alarms, any
robot can be made to sequentially forage by puck type.

For the following examples on how the TimerRobot and
timer alarms work, assume the TimerRobot and Alarm
settings as shown in Table 4.

TimerRobot AlarmRed AlarmGreen AlarmBlue

800 0 750 1500

Table 4: Example TimerRobot and Alarm Settings for Timer-

Based Foraging

Given these settings, if the robot detects a PuckRed,
the robot’s TimerRobot will be reset to AlarmRed, in this
case 0, and the robot will visually servo toward the
detected PuckRed. If the robot detects a PuckGreen,
the robot’s TimerRobot will be reset to AlarmGreen, in
this case 750, and the robot will visually servo toward
the detected PuckGreen. With the above timer set-
tings, a detected PuckBlue will be ignored as the robot’s
TimerRobot value is less than the value of TimerBlue,

and the TimerRobot value will remain unchanged. In
this example, a PuckBlue cannot be foraged until the
robot’s TimerRobot value is greater than 1500, the value
of AlarmBlue.

To implement the Timer-Based Foraging algorithm
on the robot, we used the behavior network shown in
Table 3, where PuckDet is the detected puck type and
AlarmDet is the robot’s timer alarm value for the de-
tected puck type. For example, if a PuckRed is detected,
AlarmDet = AlarmRed.

5.3 Probabilistic Foraging

The Probabilistic Foraging algorithm uses two proba-
bilistic behavior activation conditions in each robot’s be-
havior network in order to encourage sequential foraging.

The first probabilistic activation condition introduced
is whether a robot should visually servo toward a de-
tected puck or ignore the detected puck and perform a
random walk. Each robot has an assigned probability of
ignoring a detected puck of each type. For the three puck
types, these probabilities are: PIgnoreRed, PIgnoreGreen,
and PIgnoreBlue, respectively.

Whenever the activation conditions for the Visual
Servo behavior are true, the robot has some probabil-
ity, PIgnoreDet, of ignoring the detected puck, PuckDet,
and executing a random walk. This probabilistic ac-
tivation condition can be setup to pick up one puck
type more frequently than another puck type, result-
ing in more effective sequential foraging. For example,
if PIgnoreRed is less than PIgnoreGreen, then assum-
ing PuckRed and PuckGreen are encountered uniformly
during foraging, PuckRed will be foraged proportionally
faster than PuckGreen.

The second probabilistic activation condition is



Obstacle PuckDet Grasping Gripper Break- Inside Home TimerRobot Active
Detected Detected Puck Beam On Region Value Behavior

0 1 0 0 X >= AlarmDet Visual Servo
0 1 0 0 X < AlarmDet Random Walk
0 X 0 1 X X Grasp Puck
0 X 1 1 0 X Homing
0 X 1 1 1 X Drop Puck
1 X X X X X Collision Avoidance
0 0 0 0 X X Random Walk

Table 3: Behavior Network for Timer-Based Foraging

Obstacle PuckDet Grasping Gripper Inside Ignore Drop Active
Detected Detected Puck Break- Home Behavior

Beam On Region

0 1 0 0 X > PIgnoreDet X Visual Servo
0 1 0 0 X <= PIgnoreDet X Random Walk
0 X 0 1 X X X Grasp Puck
0 X 1 1 0 X > PDropDet Homing
0 X 1 1 0 X <= PDropDet Drop Puck
0 X 1 1 1 X X Drop Puck
1 X X X X X X Collision

Avoidance
0 0 0 0 X X X Random Walk

Table 5: Behavior Network for Probabilistic Foraging

whether a grasped puck should be dropped before reach-
ing the home region or whether the grasped puck should
continue to be transported toward the home region.
Each robot has an assigned probability of dropping a
grasped puck of each type while not in the home re-
gion. For the three puck types, these probabilities are:
PDropRed, PDropGreen, and PDropBlue, respectively.

Every time-step during which the activation condi-
tions for the Homing behavior are true, the robot has
some probability, PDropDet, of dropping the grasped
puck, PuckDet, while not in the home region. This prob-
abilistic activation condition can be setup to transport
one puck type to the home region more reliably than
another puck type, resulting in more effective sequen-
tial foraging. For example, if PDropRed is less than
PDropGreen, then assuming PuckRed and PuckGreen are
encountered uniformly during foraging, PuckRed will be
foraged proportionally faster than PuckGreen.

The second probabilistic activation condition, drop-
ping a grasped puck before reaching the home region, is
effective in breaking up clusters of pucks. For example,
in cases where there is a PuckRed surrounded by a ring of
PuckGreen and PuckBlue, the PuckRed can be separated
by picking up the surrounding pucks and dropping them
elsewhere, essentially moving them out of the way. In
the Timer-Based Foraging algorithm, this dispersing of
clusters if not likely as eventually the robots’ Timers will

cause them to move on to another puck type, thereby for-
aging the surrounding pucks before being able to detect
and get at the important puck in the center of the clus-
ter. The Standard Foraging algorithm will not disperse
the pucks either. The pucks will be foraged in the order
from the outside of the cluster to the inside.

The combination of these two probabilistic activation
conditions used in the Probabilistic Foraging behavior
network increases the effectiveness of sequential foraging.
To implement the Probabilistic Foraging algorithm on
the robot, we used the the behavior network shown in
Table 5. The activation conditions Ignore and Drop were
random variables in the range [0,1], selected at every
time-step.

6. Experimental Results

We ran the three foraging algorithms, Standard Forag-
ing, Timer-Based Foraging, and Probabilistic Foraging,
on the four experimental environments described in Sec-
tion 4.3. Experimental results for each foraging algo-
rithm are given below. The adaptability of Timer-Based
Foraging and Probabilistic Foraging in varying environ-
mental conditions is demonstrated by tuning the param-
eters of each algorithm to work well in Environment 1
and then applying the same algorithms, with the tuned
parameters, to Environments 2-4. The parameter tun-



ing for both algorithms was time-consuming; therefore,
making an algorithm that does not require constant re-
tuning with varying environmental conditions desirable.

For each experimental environment and sequential for-
aging algorithm, the average UtilFinal, as defined in
Equation 1, is averaged over all trials. For each environ-
ment/algorithm pair, a total of five experimental trials
were run.

In the Timer-Based Foraging algorithm, the
AlarmRed, AlarmGreen, and AlarmBlue values shown in
Table 6 were used in all experiments.

AlarmRed AlarmGreen AlarmBlue

0 750 1500

Table 6: Timer-Based Foraging Parameters

In the Probabilistic Foraging algorithm, the PIgnore
and PDrop values shown in Table 7 and Table 8, respec-
tively, were used in all experiments.

PIgnoreRed PIgnoreGreen PIgnoreBlue

0.0 0.065 0.12

Table 7: Probabilistic Foraging PIgnore Parameters

PDropRed PDropGreen PDropBlue

0.0 0.065 0.12

Table 8: Probabilistic Foraging PDrop Parameters

For each experimental environment and sequential for-
aging algorithm, the average UtilFinal over all trials is
shown in Figure 2. The standard deviation of the exper-
imental trails is shown in Figure 3.

In the trials using Environment 1, it is easily seen that
the Timer-Based and Probabilistic Foraging algorithms
achieved near perfect sequential foraging and greatly
outperform the Standard Foraging algorithm, as should
be expected.

Environments 2 and 3 investigate the adaptability
along the varying puck proportion axis. In Environment
2, the relative puck proportions are changed to include
a much higher proportion of PuckRed and a much lower
proportion of PuckBlue. The parameter settings for the
Timer-Based Foraging algorithm, shown in Table 6, and
the Probabilistic Foraging algorithm, shown in Tables
7 and 8, are unchanged from the values used in Envi-
ronment 1 experiments. As Figure 2 shows, both the
Timer-Based and the Probabilistic algorithms maintain
similar performance as that shown in the Environment
1 trials.

In Environment 3, the relative puck proportions are
adjusted in the opposite direction: there are many fewer
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PuckReds than PuckBlues. Again, the Timer-Based For-
aging algorithm maintains similar performance as that
seen in Environments 1 and 2. However, the Proba-
bilistic Foraging algorithm shows an interesting degra-
dation in performance as compared with Environments
1 and 2. With PuckRed being in such low proportion,
and therefore infrequently encountered by the foraging
robots, many PuckGreen and PuckBlue were prematurely
foraged. This represents an important characteristic of
the Probabilistic Foraging algorithm: it does not adapt
well if the proportions of pucks being collected shift heav-
ily into the favor of pucks required to be foraged later
in the task sequence over ones that should be collected
sooner.

Environment 4 investigates the adaptability along the
varying arena size axis. This environment has each puck
type represented in even proportions as in Environment



1. In Environment 4, the performance of the Proba-
bilistic Foraging algorithm achieves performance com-
parable to that seen in Environments 1 and 2. In this
environment, however, the performance of the Timer-
Based Foraging algorithm shows degraded performance
as compared to Environments 1-3. This is intuitive since
the larger the arena, the longer the foraging robots spend
searching for pucks, which means there is an increase in
probability that a robot’s timer alarm for the next puck
type will be activated prematurely and thus that an out-
of-order puck type will be collected. This environment
demonstrates that the Timer-Based Foraging algorithm
does not adapt well to increased arena size.

As the experimental results show, the Timer-Based
Foraging algorithm adapts well along the dimension
varying relative puck type proportions while the Prob-
abilistic Foraging algorithms adapts well along the di-
mension of varying arena size. These properties could
be used as guiding principles in selecting the appropri-
ate sequential foraging algorithm for a given specific set
of task properties.

7. Discussion

A means of improving foraging efficiency could involve
each robot remembering where uncollected pucks were
seen and returning to those locations. This is possible
if the location of pucks is relatively stable over time,
and if the robots are able to localize and store locations.
Unfortunately, both of these conditions are typically not
met in MDRS.

Remembering locations of objects, if it is possible,
loses its effectiveness in highly dynamic environments,
where the probability of objects being purposefully or
accidentally pushed around by other robots is high. In
general, in dynamic environments with large numbers
of robots, remembering much about manipulable as-
pects of the world state, such as the location of pucks,
is rarely useful. The second requirement, that of be-
ing able to localize, is a major challenge in mobile
robotics, an in particular in MDRS. Although there
are a number of localization techniques available (see
(Borenstein et al., 1996) and (Fox et al., 1998) for re-
views), most involve computation beyond what is usually
embodied in MDRS.

Other methods for improving foraging efficiency in-
volve knowledge of global world state or task state, such
as the total number of objects or the number of objects
remaining to be collected. Such knowledge is fundamen-
tally global in nature, and thus not available in MDRS,
where each robot only has a limited view of its imme-
diate environment, and usually cannot communicate or
if it can, it is only with local neighbors, not the whole
distributed group. Thus, MDRS suffer from a rather ex-
treme case of partial observability, and must get around
it using clever means, such as using the environment to

not only sense but also store information to be used by
other agents. This technique, commonly found in na-
ture, is referred to as stigmergy, the process of using
the environment as a means of indirect communication
(Holland and Melhuish, 2000).

Stigmergy is defined as the environmental modifica-
tions resulting from one action stimulating the execution
of a subsequent action (Holland and Melhuish, 2000). In
the case of our Timer-Based and Probabilistic Foraging
algorithms, the environment is modified by the removal
of pucks through foraging. However, the removal of a
puck does not directly stimulate the activation of a sub-
sequent behavior, but does so indirectly by increasing the
likelihood of a robot encountering other pucks. In the
case of Timer-Based Foraging, the successful collection
of all pucks of a certain type causes the TimerRobot of all
the foraging robots to move beyond the next puck type
alarm value, resulting in the initiation of foraging the
next puck type. In the case of Probabilistic Foraging,
the continual removal of a certain puck type increases
the likelihood of the foraging robots to encounter and
eventually forage other puck types. Both the Timer-
Based and the Probabilistic Foraging algorithms use a
form of stigmergy, indirect communication through the
environment through puck removal, to influence the fu-
ture foraging activities of other robots.

8. Conclusions

A Minimalist Distributed Robotic System (MDRS) is a
society of simple robots, each using only local sensing
and control and limited capabilities in terms of intelli-
gence, sensing, and communication. The robots in our
MDRS maintain little or no state information, extract
a limited amount of information from available sensors,
and cannot explicitly communicate with other robots in
the system.

The aim of this work is to provide a MDRS with the
capability of sequential task execution. In this paper,
we presented two sequential task execution algorithms,
Timer-Based behavior activation and Probabilistic be-
havior activation, and experimentally verified them in a
sequential foraging task. The two algorithms were tested
on a number of experimental environments and their per-
formance characteristics were compared.

In the sequential foraging task, the Timer-Based be-
havior activation method was shown to scale well with
varying object type proportions but also to degrade in
an increase of arena size. The Probabilistic behavior ac-
tivation method was shown to scale well with an increase
in arena size but had degraded performance with varying
object type proportions.

Our future work includes investigating how the group
size of an MDRS affects the performance of the two se-
quential task execution algorithms we described. Our
preliminary experiments indicate that the performance



of the Timer-Based Foraging algorithm is sensitive to the
number of active foraging robots. This sensitivity to the
number of active foraging robots does not appear to be
as prevalent in the Probabilistic Foraging algorithm.
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